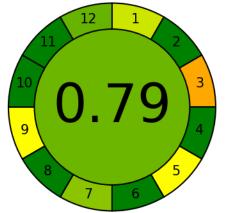

SUPPLEMENTARY FILE

AGREE Report of Developed methods

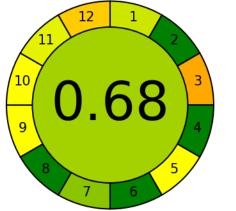

- 1. Sample treatment
- 2. Sample amount

- Bample difference
 Device positioning
 Sample prep. stages
 Automation, miniaturization
- 6. Derivatization
- 7. Waste
- 8. Analysis throughput
 9. Energy consumption
 10. Source of reagents

- 11. Toxicity
- 12. Operator's safety

Criteria 1. Direct analytical techniques should be applied to avoid sample	Score 0.6	Weight 2
treatment. 2. Minimal sample size and minimal number of samples are goals.	0.55	2
3. If possible, measurements should be performed in situ.	0.33	2
 Integration of analytical processes and operations saves energy and reduces the use of reagents. 	1.0	2
5. Automated and miniaturized methods should be selected.	0.0	2
6. Derivatization should be avoided.	1.0	2
Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided.	0.6	2
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.	0.72	2
9. The use of energy should be minimized.	1.0	2
10. Reagents obtained from renewable sources should be preferred.	0.5	2
11. Toxic reagents should be eliminated or replaced.	1.0	2
12. Operator's safety should be increased.	0.8	2

AGREE Report of Reported TLC method(13)

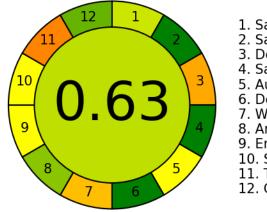


- 1. Sample treatment
- 2. Sample amount

- Bample difference
 Device positioning
 Sample prep. stages
 Automation, miniaturization
- 6. Derivatization
- 7. Waste
- 8. Analysis throughput
 9. Energy consumption
 10. Source of reagents
- 11. Toxicity
- 12. Operator's safety

Criteria 1. Direct analytical techniques should be applied to avoid sample treatment.	Score 0.6	Weight 2
2. Minimal sample size and minimal number of samples are goals.	1.0	2
3. If possible, measurements should be performed in situ.	0.33	2
4. Integration of analytical processes and operations saves energy and reduces the use of reagents.	1.0	2
5. Automated and miniaturized methods should be selected.	0.5	2
6. Derivatization should be avoided.	1.0	2
7. Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided.	0.73	2
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.	1.0	2
9. The use of energy should be minimized.	0.5	2
10. Reagents obtained from renewable sources should be preferred.	1.0	2
11. Toxic reagents should be eliminated or replaced.	1.0	2
12. Operator's safety should be increased.	0.8	2

AGREE Report of Reported TLC method(12)

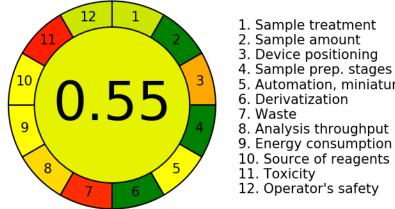

- 1. Sample treatment
- 2. Sample amount

- Bample difference
 Device positioning
 Sample prep. stages
 Automation, miniaturization
- 6. Derivatization
- 7. Waste
- 8. Analysis throughput
 9. Energy consumption
 10. Source of reagents

- 11. Toxicity
- 12. Operator's safety

Criteria 1. Direct analytical techniques should be applied to avoid sample treatment.	Score 0.6	Weight 2
2. Minimal sample size and minimal number of samples are goals.	1.0	2
3. If possible, measurements should be performed in situ.	0.33	2
4. Integration of analytical processes and operations saves energy and reduces the use of reagents.	1.0	2
5. Automated and miniaturized methods should be selected.	0.5	2
6. Derivatization should be avoided.	1.0	2
Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided.	0.73	2
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.	1.0	2
9. The use of energy should be minimized.	0.5	2
10. Reagents obtained from renewable sources should be preferred.		2
11. Toxic reagents should be eliminated or replaced.	0.55	2
12. Operator's safety should be increased.	0.4	2

AGREE Report of Reported HPLC method(12)

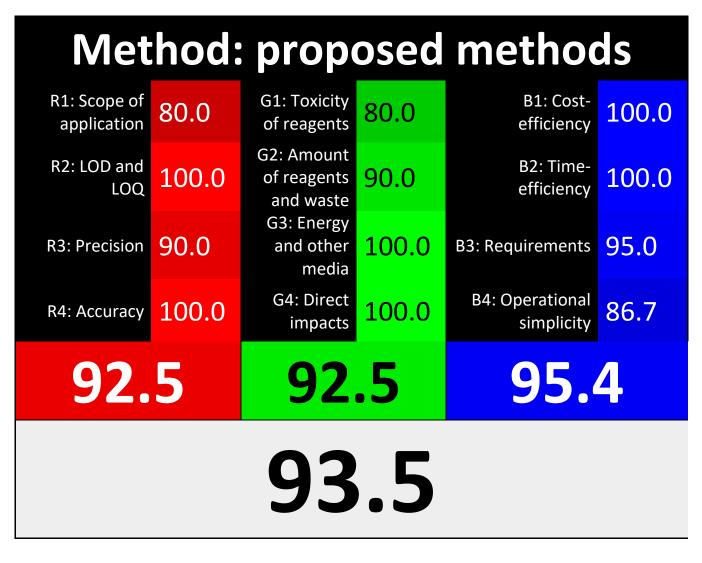

1	Cam	nla	troa	tm	ont
т.	Sam	DIE	uea	UII	enu

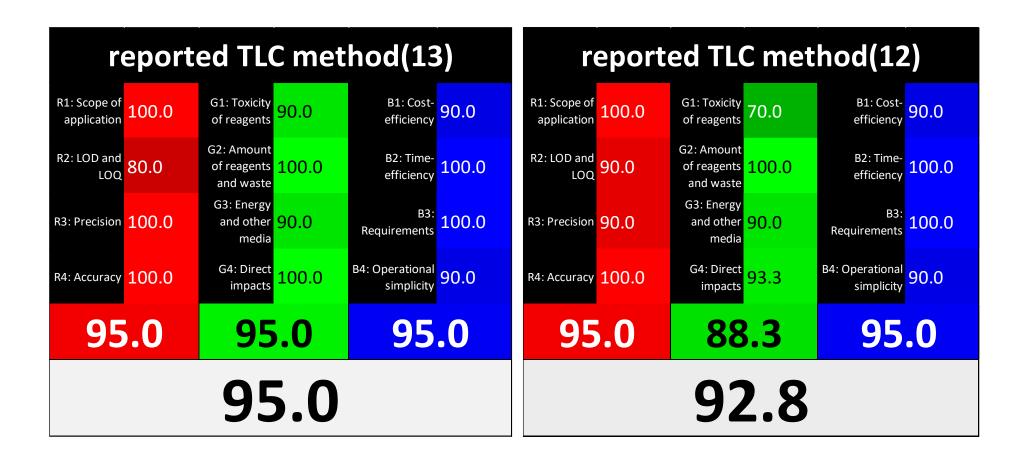
- Sample treatment
 Sample amount
 Device positioning
 Sample prep. stages
 Automation, miniaturization
- 6. Derivatization
- 7. Waste
- 8. Analysis throughput
 9. Energy consumption
 10. Source of reagents

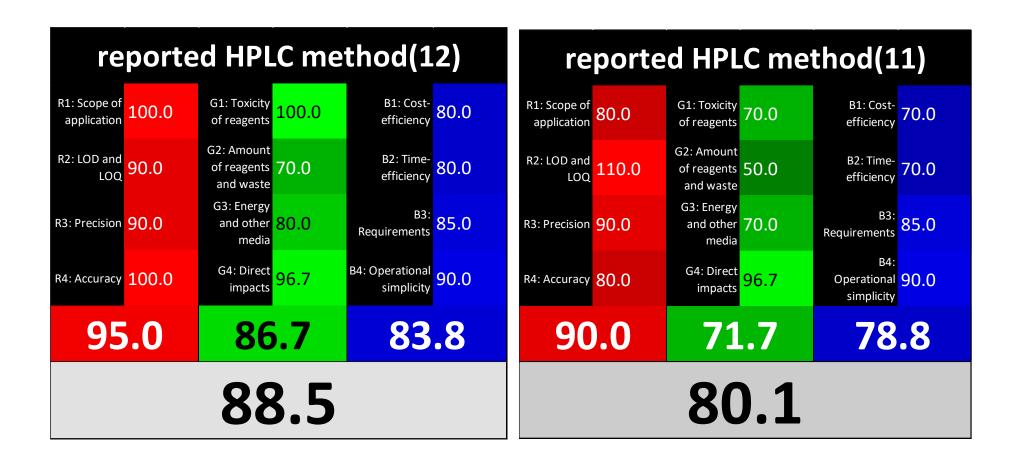
- 11. Toxicity
- 12. Operator's safety

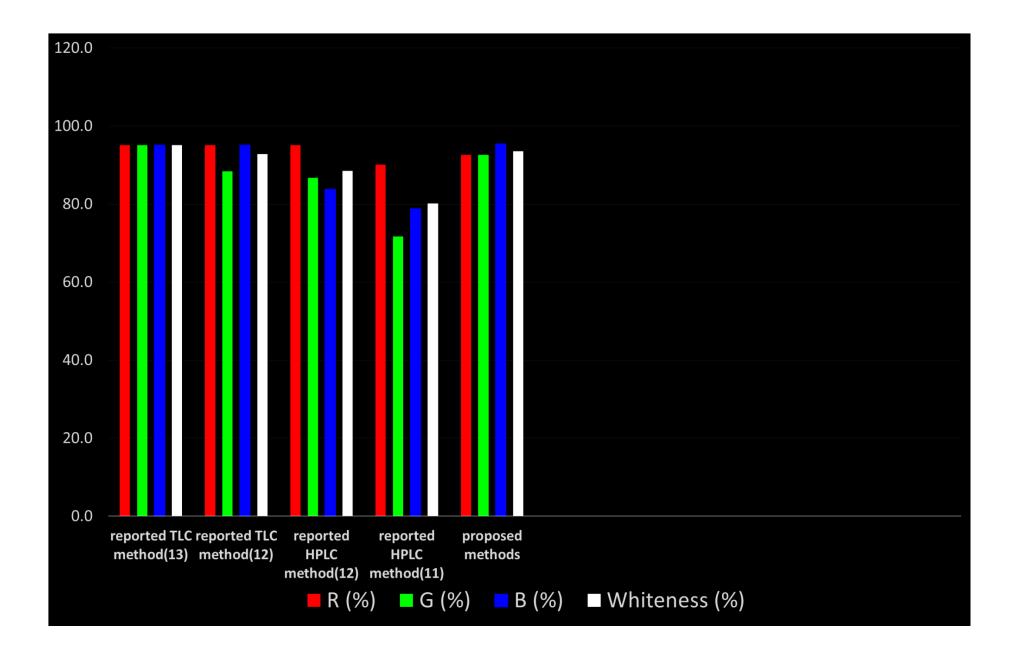
Criteria 1. Direct analytical techniques should be applied to avoid sample treatment.	Score 0.6	Weight 2
2. Minimal sample size and minimal number of samples are goals.	1.0	2
3. If possible, measurements should be performed in situ.	0.33	2
 Integration of analytical processes and operations saves energy and reduces the use of reagents. 	1.0	2
5. Automated and miniaturized methods should be selected.	0.5	2
6. Derivatization should be avoided.	1.0	2
7. Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided.	0.37	2
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.	0.73	2
9. The use of energy should be minimized.	0.5	2
10. Reagents obtained from renewable sources should be preferred.	0.5	2
11. Toxic reagents should be eliminated or replaced.	0.26	2
12. Operator's safety should be increased.	0.8	2

AGREE Report of Reported HPLC method(11)


- 1. Sample treatment
- 2. Sample amount


- Bample difference
 Device positioning
 Sample prep. stages
 Automation, miniaturization
- 6. Derivatization


- 11. Toxicity
- 12. Operator's safety


Criteria 1. Direct analytical techniques should be applied to avoid sample treatment.	Score 0.6	Weight 2
2. Minimal sample size and minimal number of samples are goals.	1.0	2
3. If possible, measurements should be performed in situ.	0.33	2
4. Integration of analytical processes and operations saves energy and reduces the use of reagents.	1.0	2
5. Automated and miniaturized methods should be selected.	0.5	2
6. Derivatization should be avoided.	1.0	2
7. Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided.	0.09	2
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.	0.43	2
9. The use of energy should be minimized.	0.5	2
10. Reagents obtained from renewable sources should be preferred.	0.5	2
11. Toxic reagents should be eliminated or replaced.	0.06	2
12. Operator's safety should be increased.	0.6	2

Results of whiteness appraisal of the proposed methods and reported chromatographic methods

