Molecular docking and pharmacophore modelling; A bridged explanation with emphasis on validation

Document Type : Review Article

Authors

Department of Pharmacognosy, Faculty of Pharmacy, Alexandria, Egypt

Abstract

Virtual screening (VS) techniques have emerged in the past decade as an efficient strategy in lead identification. Molecular docking as well as pharmacophore and 3D-QSAR modelling are two major VS techniques standing out as cornerstones in the process of new drug discovery. Explanation of the main virtual screening techniques as well as the most commonly used validation parameters are discussed thoroughly emphasizing their use and shortcomings. Criteria for the selection of benchmarking datasets and training sets for molecular docking, pharmacophore, and 3D-QSAR models are discussed. Understanding the basics behind these techniques and their validation is crucial to judge the validity of the obtained results. Computational technologies have witnessed great improvement in the last few years which had a great impact on the improvement of virtual screening. Fields such as cloud computing and deep learning algorithms are among the technologies modeling the future of computer-aided drug design. This mini-review gives summarized knowledge for guiding beginners as well as experts in the field of virtual screening.

Keywords

Main Subjects


  1. Petersen F, Amstutz R. Natural Compounds as Drugs: Birkhäuser Basel; 2007.
  2. Potterat O, Hamburger M. Natural products in drug discovery-concepts and approaches for tracking bioactivity. Current Organic Chemistry. 2006;10(8):899-920.
  3. Lin X, Li X, Lin X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules. 2020;25(6):1375.
  4. Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Computers in Biology and Medicine. 2021;137:104851.
  5. Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. In silico methods for drug design and discovery. Frontiers Media SA; 2020. p. 612.
  6. Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discovery Today. 2019;24(5):1157-65.
  7. Ma D-L, Chan DS-H, Leung C-H. Molecular docking for virtual screening of natural product databases. Chemical science. 2011;2(9):1656-65.
  8. Shen J, Xu X, Cheng F, Liu H, Luo X, Chen K, et al. Virtual screening on natural products for discovering active compounds and target information. Curr Med Chem. 2003;10(21):2327-42.
  9. Walters WP, Wang R. New Trends in Virtual Screening. Journal of Chemical Information and Modeling. 2020;60(9):4109-11.
  10. Dhasmana A, Raza S, Jahan R, Lohani M, Arif JM. Chapter 19 - High-Throughput Virtual Screening (HTVS) of Natural Compounds and Exploration of Their Biomolecular Mechanisms: An In Silico Approach. In: Ahmad Khan MS, Ahmad I, Chattopadhyay D, editors. New Look to Phytomedicine: Academic Press; 2019. p. 523-48.
  11. Subhaswaraj P, Siddhardha B. Chapter 11 - Molecular docking and molecular dynamic simulation approaches for drug development and repurposing of drugs for severe acute respiratory syndrome-Coronavirus-2. In: Parihar A, Khan R, Kumar A, Kaushik AK, Gohel H, editors. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection: Academic Press; 2022. p. 207-46.
  12. Lavecchia A, Giovanni DC. Virtual Screening Strategies in Drug Discovery: A Critical Review. Current Medicinal Chemistry. 2013;20(23):2839-60.
  13. Jiang L, Rizzo RC. Pharmacophore-Based Similarity Scoring for DOCK. The Journal of Physical Chemistry B. 2015;119(3):1083-102.
  14. Baig MH, Ahmad K, Roy S, Ashraf JM, Adil M, Siddiqui MH, et al. Computer Aided Drug Design: Success and Limitations. Curr Pharm Des. 2016;22(5):572-81.
  15. Yang S-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today. 2010;15(11):444-50.
  16. Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annual review of biophysics and biomolecular structure. 2003;32:335-73.
  17. Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: current status and future challenges. Proteins. 2006;65(1):15-26.
  18. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry. 1998;19(14):1639-62.
  19. Ewing TJA, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design. 2001;15(5):411-28.
  20. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, et al. A Critical Assessment of Docking Programs and Scoring Functions. Journal of Medicinal Chemistry. 2006;49(20):5912-31.
  21. McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des. 2012;26(8):897-906.
  22. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-49.
  23. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52(4):609-23.
  24. Abagyan R, Totrov M, Kuznetsov D. ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry. 1994;15(5):488-506.
  25. Schrödinger L. Schrödinger, LLC; New York, NY: 2017. Schrödinger Suite. 2017;2:2017-1.
  26. Zavodszky MI, Rohatgi A, Van Voorst JR, Yan H, Kuhn LA. Scoring ligand similarity in structure-based virtual screening. J Mol Recognit. 2009;22(4):280-92.
  27. Jain AN. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des. 2007;21(5):281-306.
  28. Thomsen R, Christensen MH. MolDock:  A New Technique for High-Accuracy Molecular Docking. Journal of Medicinal Chemistry. 2006;49(11):3315-21.
  29. Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins. 2003;52(1):80-7.
  30. Barnum D, Greene J, Smellie A, Sprague P. Identification of Common Functional Configurations Among Molecules. Journal of Chemical Information and Computer Sciences. 1996;36(3):563-71.
  31. Klebe G, Abraham U, Mietzner T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. Journal of Medicinal Chemistry. 1994;37(24):4130-46.
  32. Martin YC, Bures MG, Danaher EA, DeLazzer J, Lico I, Pavlik PA. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. Journal of Computer-Aided Molecular Design. 1993;7(1):83-102.
  33. Richmond NJ, Abrams CA, Wolohan PRN, Abrahamian E, Willett P, Clark RD. GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. Journal of Computer-Aided Molecular Design. 2006;20(9):567-87.
  34. Barnum D, Greene J, Smellie A, Sprague P. Identification of common functional configurations among molecules. J Chem Inf Comput Sci. 1996;36(3):563-71.
  35. Li H, Sutter J, Remy H. Pharmacophore Perception, Development, and Use in Drug Design, ch. HypoGen: An Automated System for Generating 3D Predictive Pharmacophore Models. International University Line. 2000:49-68.
  36. Wolber G, Langer T. LigandScout:  3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. Journal of Chemical Information and Modeling. 2005;45(1):160-9.
  37. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design. 2006;20(10):647-71.
  38. Joseph-McCarthy D, Alvarez JC. Automated generation of MCSS-derived pharmacophoric DOCK site points for searching multiconformation databases. Proteins: Structure, Function, and Bioinformatics. 2003;51(2):189-202.
  39. Prachayasittikul V, Worachartcheewan A, Shoombuatong W, Songtawee N, Simeon S, Prachayasittikul V, et al. Computer-Aided Drug Design of Bioactive Natural Products. Curr Top Med Chem. 2015;15(18):1780-800.
  40. Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. 2014;14(16):1923-38.
  41. Dias R, de Azevedo WF. Molecular docking algorithms. Current drug targets. 2008;9(12):1040-7.
  42. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57.
  43. Brünger AT, Nilges M. Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMRspectroscopy. Quarterly Reviews of Biophysics. 2009;26(1):49-125.
  44. Cavasotto CN, Phatak SS. Homology modeling in drug discovery: current trends and applications. Drug Discovery Today. 2009;14(13):676-83.
  45. Jacob RB, Andersen T, McDougal OM. Accessible high-throughput virtual screening molecular docking software for students and educators. PLoS computational biology. 2012;8(5):e1002499.
  46. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, et al. Impact of high-throughput screening in biomedical research. Nature Reviews Drug Discovery. 2011;10(3):188-95.
  47. Mukherjee S, Balius TE, Rizzo RC. Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. Journal of Chemical Information and Modeling. 2010;50(11):1986-2000.
  48. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, et al. Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. Journal of Chemical Information and Modeling. 2009;49(2):444-60.
  49. Rueda M, Abagyan R. Best Practices in Docking and Activity Prediction. bioRxiv. 2016:039446.
  50. Truchon J-F, Bayly CI. Evaluating Virtual Screening Methods:  Good and Bad Metrics for the “Early Recognition” Problem. Journal of Chemical Information and Modeling. 2007;47(2):488-508.
  51. Yuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit. 2011;24(2):149-64.
  52. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection--what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22(3-4):213-28.
  53. Zhao W, Hevener KE, White SW, Lee RE, Boyett JM. A statistical framework to evaluate virtual screening. BMC bioinformatics [Internet]. 2009 2009/07//; 10:[225 p.].
  54. Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;49(23):6789-801.
  55. Nicholls A. What do we know and when do we know it? Journal of Computer-Aided Molecular Design. 2008;22(3):239-55.
  56. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry. 2004;47(7):1739-49.
  57. Riniker S, Landrum GA. Open-source platform to benchmark fingerprints for ligand-based virtual screening. Journal of Cheminformatics. 2013;5(1):26.
  58. Empereur-Mot C, Guillemain H, Latouche A, Zagury J-F, Viallon V, Montes M. Predictiveness curves in virtual screening. Journal of cheminformatics [Internet]. 2015 2015; 7:[52 p.].
  59. Triballeau N, Acher F, Brabet I, Pin J-P, Bertrand H-O. Virtual Screening Workflow Development Guided by the “Receiver Operating Characteristic” Curve Approach. Application to High-Throughput Docking on Metabotropic Glutamate Receptor Subtype 4. Journal of Medicinal Chemistry. 2005;48(7):2534-47.
  60. Lagarde N, Zagury J-F, Montes M. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling. 2015;55(7):1297-307.
  61. Wallach I, Lilien R. Virtual Decoy Sets for Molecular Docking Benchmarks. Journal of Chemical Information and Modeling. 2011;51(2):196-202.
  62. Vogel SM, Bauer MR, Boeckler FM. DEKOIS: Demanding Evaluation Kits for Objective in Silico Screening — A Versatile Tool for Benchmarking Docking Programs and Scoring Functions. Journal of Chemical Information and Modeling. 2011;51(10):2650-65.
  63. Rohrer SG, Baumann K. Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data. Journal of Chemical Information and Modeling. 2009;49(2):169-84.
  64. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. Journal of Medicinal Chemistry. 2012;55(14):6582-94.
  65. Caporuscio F, Tafi A. Pharmacophore modelling: a forty year old approach and its modern synergies. Current medicinal chemistry. 2011;18(17):2543-53.
  66. Seidel T, Bryant SD, Ibis G, Poli G, Langer T. 3D pharmacophore modeling techniques in computer-aided molecular design using LigandScout. Tutorials Chemoinform. 2017;281:279-309.
  67. Poptodorov K, Luu T, Hoffmann RD. Pharmacophore model generation software tools. 2006.
  68. Kaserer T, Beck KR, Akram M, Odermatt A, Schuster D. Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules. 2015;20(12):22799-832.
  69. Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design--a review. Current topics in medicinal chemistry. 2010;10(1):95-115.
  70. Acharya C, Coop A, Polli JE, Mackerell AD. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Current computer-aided drug design. 2011;7(1):10-22.
  71. Sippl W. Application of Structure‐Based Alignment Methods for 3D QSAR Analyses. Pharmacophores and Pharmacophore Searches. 2006;32:223-49.
  72. Mannhold R, Kubinyi H, Folkers G. Pharmacophores and pharmacophore searches: John Wiley & Sons; 2006.
  73. Wolber G, Seidel T, Bendix F, Langer T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discovery Today. 2008;13(1):23-9.
  74. Kaserer T, Beck KR, Akram M, Odermatt A, Schuster D. Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules (Basel, Switzerland) [Internet]. 2015 2015/12//; 20(12):[22799-832 pp.]
  75. Krovat EM, Langer T. Non-Peptide Angiotensin II Receptor Antagonists:  Chemical Feature Based Pharmacophore Identification. Journal of Medicinal Chemistry. 2003;46(5):716-26.
  76. Evans DA, Doman TN, Thorner DA, Bodkin MJ. 3D QSAR Methods:  Phase and Catalyst Compared. Journal of Chemical Information and Modeling. 2007;47(3):1248-57.
  77. Kiralj R, Ferreira MMC. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. Journal of the Brazilian Chemical Society. 2009;20:770-87.
  78. Roy K, Ambure P, Aher RB. How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemometrics and Intelligent Laboratory Systems. 2017;162:44-54.
  79. Roy K, Mitra I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen. 2011;14(6):450-74.
  80. Consonni V, Ballabio D, Todeschini R. Comments on the Definition of the Q2 Parameter for QSAR Validation. Journal of Chemical Information and Modeling. 2009;49(7):1669-78.
  81. Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN. Virtual Screening in Drug Discovery - A Computational Perspective. Current Protein and Peptide Science. 2007;8(4):329-51.
  82. Qing X, Yin Lee X, De Raeymaeker J, Rh Tame J, Yj Zhang K, De Maeyer M, et al. Pharmacophore modeling: advances, limitations, and current utility in drug discovery. Journal of Receptor, Ligand and Channel Research. 2014;7(null):81-92.
  83. Giordano D, Biancaniello C, Argenio MA, Facchiano A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals (Basel). 2022;15(5).
  84. Haga JH, Ichikawa K, Date S. Virtual Screening Techniques and Current Computational Infrastructures. Curr Pharm Des. 2016;22(23):3576-84.
  85. Olğaç A, Türe A, Olğaç S, Möller S. Cloud-based high throughput virtual screening in novel drug discovery. High-Performance Modelling and Simulation for Big Data Applications: Selected Results of the COST Action IC1406 cHiPSet: Springer International Publishing Cham; 2019. p. 250-78.
  86. Singh N, Sharma U, Bairagee D, Jain N. Cloud Application in Drug Development. Bioinformatics Tools and Big Data Analytics for Patient Care: Chapman and Hall/CRC; 2022. p. 181-200.
  87. Puertas-Martín S, Banegas-Luna AJ, Paredes-Ramos M, Redondo JL, Ortigosa PM, Brovarets OhO, et al. Is high performance computing a requirement for novel drug discovery and how will this impact academic efforts? Expert Opinion on Drug Discovery. 2020;15(9):981-5.
  88. Carpenter KA, Cohen DS, Jarrell JT, Huang X. Deep learning and virtual drug screening. Future Med Chem. 2018;10(21):2557-67.
  89. Kimber TB, Chen Y, Volkamer A. Deep Learning in Virtual Screening: Recent Applications and Developments. Int J Mol Sci. 2021;22(9).
  90. Oliveira TAd, Silva MPd, Maia EHB, Silva AMd, Taranto AG. Virtual Screening Algorithms in Drug Discovery: A Review Focused on Machine and Deep Learning Methods. Drugs and Drug Candidates. 2023;2(2):311-34.
  91. Chien J-T. Chapter 7 - Deep Neural Network. In: Chien J-T, editor. Source Separation and Machine Learning: Academic Press; 2019. p. 259-320.
  92. Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878-912.