Unveiling the bioactive potential of Egyptian loquat leaves: Seasonal and cultivar-based variation in phenolic profiles, ntimicrobial, anticancer, antioxidant, and xanthine oxidase inhibitory activities

Document Type : Original Article

Authors

1 Pharmaceutical Sciences Division, Pharmacognosy Department, College of Pharmacy, Arab Academy for science, Technology and Maritime Transport, Alexandria, Egypt

2 Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt

Abstract

In this study, UPLC-MS/MS analysis was applied to analyze phenolic pattern of loquat leaves cultivar Golden Nuggets. The leaves extracts were assessed for their antimicrobial activity. The cytotoxic , antioxidant, total polyphenolic content and xanthine oxidase enzyme inhibitory activity of leaf extracts, together with two other cultivars, were evaluated at different growing seasons. Twenty-eight compounds belonging to different metabolite classes were identified in cultivar Golden Nuggets among which phenolic compounds, especially flavonoids were the most predominant class. The methylene chloride extract of cultivar Golden Nuggets significantly inhibited the growth of Gram-positive S. aureus. The total ethanolic extracts of the tested cultivars effectively suppressed the proliferation of A549 lung cancer cell line. with Golden Nuggets being the most active. Among Golden Nuggets fractions, the residual aqueous extract showed the most potent anti-proliferative activity followed by methylene chloride fraction. The tested cultivars showed significant antioxidant activities with remarkable TPC. The highest antioxidant activity and TPC were observed for Emanwil cultivar followed by Zekeim, then Golden Nuggets with the flowering stage recording the highest values for the three cultivars. Moreover, the examined cultivars significantly inhibited XO enzyme, showing varying efficacies through different seasons. The highest activities were observed for ethyl acetate and then methylene chloride fractions. A total of five ethyl acetate fractions showed promising inhibition rates comparable to that of allopurinol. This study shed light on Egyptian loquat leaves as a potential source of bioactive constituents that could serve as leads to produce effective and less toxic anticancer, antioxidant, and hypouricemic agents.

Highlights

•    UPLC-MS/MS analysis was applied to analyze the phenolic pattern of loquat leaves cultivar Golden Nuggets resulted in the identification of 28 compounds.
•    The leaves extracts of three loquat cultivars were assessed for different biological activities at different growing seasons. 
•    The leaves of the three examined cultivars exerted promising cytotoxic activity. 

Keywords

Main Subjects


(1)    Zou S, Wu J, Shahid MQ, He Y, Lin S, Liu Z, et al. Identification of key taste components in loquat using widely targeted metabolomics. Food Chem. 2020;323(December 2018):126822. 
(2)    Yao Z, Cheng F, Ming T, Sun C, Ran Q, Zhang C, et al. Eriobotrya japonica (Thunb.) Lindl leaves: Reviewing their specialized metabolites and pharmacology. Biochem Syst Ecol. 2023;110(August):104707. 
(3)    Dhiman A, Suhag R, Thakur D, Gupta V, Prabhakar PK. Current Status of Loquat (Eriobotrya Japonica Lindl.): Bioactive Functions, Preservation Approaches, and Processed Products. Food Rev Int. 2022;38(S1):286–316. 
(4)    Liu Y, Zhang W, Xu C, Li X. Biological activities of extracts from Loquat (Eriobotrya japonica Lindl.): A review. Int J Mol Sci. 2016;17(12):1–15. 
(5)    Kim SH, Kwon YE, Park WH, Jeon H, Shin TY. Effect of leaves of Eriobotrya japonica on anaphylactic allergic reaction and production of tumor necrosis factor-α. Immunopharmacol Immunotoxicol. 2009;31(2):314–9. 
(6)    Matalka KZ, Abdulridha NA, Badr MM, Mansoor K, Qinna NA, Qadan F. Eriobotrya japonica water extract characterization: An inducer of interferon-gamma production mainly by the JAK-STAT pathway. Molecules. 2016;21(722):1–12. 
(7)    Zhu X, Wang L, Zhao T, Jiang Q. Traditional uses, phytochemistry, pharmacology, and toxicity of Eriobotrya japonica leaves: A summary. J Ethnopharmacol. 2022;298(May):115566. 
(8)    Gao J, Zhang J, Qu Z, Zhou H, Tong Y, Liu D, et al. Study on the mechanisms of the bronchodilator effects of Folium Eriobotryae and the selected active ingredient on isolated guinea pig tracheal strips. Pharm Biol. 2016;54(11):2742–52. 
(9)    Huang Y, Li J, Cao Q, Yu SC, Lv XW, Jin Y, et al. Anti-oxidative effect of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf in chronic bronchitis rats. Life Sci. 2006;78(23):2749–57. 
(10)    Huang Y, Li J, Wang R, Wu Q, Li YH, Yu SC, et al. Effect of triterpene acids of Eriobotrya japonica (thunb.) lindl. leaf on inflammatory cytokine and mediator induction from alveolar macrophages of chronic bronchitic rats. Inflamm Res. 2007;56(2):76–82. 
(11)    Ito H, Kobayashi E, Li SH, Hatano T, Sugita D, Kubo N, et al. Megastigmane glycosides and an acylated triterpenoid from Eriobotrya japonica. J Nat Prod. 2001;64(6):737–40. 
(12)    Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, et al. Anti-inflammatory and Antitumor-Promoting Effects of the Triterpene Acids from the Leaves of Eriobotrya japonica. Biol Pharm Bull. 2005;28(10):1995—1999. 
(13)    Jian T, Wu Y, Ding X, Lv H, Ma L, Zuo Y, et al. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells. Biomed Pharmacother. 2018;97(2018):1125–30. 
(14)    Cha DS, Shin TY, Eun JS, Kim DK, Jeon H. Anti-metastatic properties of the leaves of Eriobotrya japonica. Arch Pharm Res. 2011;34(3):425–36. 
(15)    Mokdad-Bzeouich I, Kilani-Jaziri S, Mustapha N, Bedoui A, Ghedira K, Chekir-Ghedira L. Evaluation of the antimutagenic, antigenotoxic, and antioxidant activities of Eriobotrya japonica leaves. Pharm Biol. 2015;53(12):1786–94. 
(16)    Shahat AA, Ullah R, Alqahtani AS, Alsaid MS, Husseiny HA, Al Meanazel OTR. Hepatoprotective effect of eriobotrya japonica leaf extract and its various fractions against carbon tetra chloride induced hepatotoxicity in rats. Evidence-based Complement Altern Med. 2018;2018:1–8. 
(17)    Liu X, Song L, Xue B, Chi Z, Wang Y, Wen S, et al. Organic acid and sugar components accumulation and flavor associated metabolites dynamic changes in yellow- and white-fleshed seedless loquats (Eriobotrya japonica). Food Chem X. 2024;21(November 2023). 
(18)    Kumar S. A Critical Review on Loquat (Eriobotrya japonica Thunb/ Lindl). Int J Pharm Biol Arch. 2014;5(2):1–7. 
(19)    Elsabagh AS, Haeikl AM. Fruit Characteristics Evaluation of Four new loquat genotypes grown in Egypt. Res J Agric Biol Sci. 2012;8(2):197–200. 
(20)    Murad RI. Some Physical and Mechanical Properties of Loquat (Eriobotrya japonica) Fruit With Change of Moisture Content. Alex J Fd Sci Technol. 2012;9(1):1–6. 
(21)    Ramasar R, Naidoo Y, Dewir YH, El-Banna AN. Seasonal Change in Phytochemical Composition and Biological Activities of Carissa macrocarpa (Eckl.) A. DC. Leaf Extract. Horticulturae. 2022;8(9):1–13. 
(22)    Liebelt DJ, Jordan JT, Doherty CJ. Only a matter of time: the impact of daily and seasonal rhythms on phytochemicals. Phytochem Rev. 2019;18(6):1409–33. 
(23)    Verma N, Shukla S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants. 2015;2(4):105–13. 
(24)    Pant P, Pandey S, Dall’Acqua S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem Biodivers. 2021;18(11). 
(25)    Luz TRSA, Leite JAC, de Mesquita LSS, Bezerra SA, Silveira DPB, de Mesquita JWC, et al. Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. Ind Crops Prod. 2020;153(May). 
(26)    Jang IC, Oh WG, Lee SC, Ahn GH, Lee JH. Antioxidant activity of 4 cultivars of persimmon fruit. Food Sci Biotechnol. 2011;20(1):71–7. 
(27)    Xu H xia, Chen J wei. Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. J Sci Food Agric. 2011;91(6):1057–63. 
(28)    Eraso AJ, Albesa I. Eriobotrya japonica counteracts reactive oxygen species and nitric oxide stimulated by chloramphenicol. Am J Chin Med. 2007;35(5):875–85. 
(29)    Ferreres F, Gomes D, Valentão P, Gonçalves R, Pio R, Chagas EA, et al. Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chem. 2009;114(3):1019–27. 
(30)    Yokota J, Takuma D, Hamada A, Onogawa M, Yoshioka S, Kusunose M, et al. Scavenging of Reactive Oxygen Species by Eriobotrya japonica Seed Extract. Biol Pharm Bull. 2006;29(3):467–71. 
(31)    Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Cytotoxicity of Nigella Sativa seed oil and extract against human lung cancer cell line. Asian Pacific J Cancer Prev. 2014;15(2):983–7. 
(32)    Hwang YJ, Lee EJ, Kim HR, Hwang KA. In vitro antioxidant and anticancer effects of solvent fractions from prunella vulgaris var. lilacina. BMC Complement Altern Med. 2013;13(310):1–9. 
(33)    Zar PPK, Yano S, Sakao K, Hashimoto F, Nakano T, Fujii M, et al. In vitro anticancer activity of loquat tea by inducing apoptosis in human leukemia cells. Biosci Biotechnol Biochem. 2014;78(10):1731–7. 
(34)    Liu F, Deng C, Cao W, Zeng G, Deng X, Zhou Y. Phytochemicals of Pogostemon Cablin (Blanco) Benth. aqueous extract: Their xanthine oxidase inhibitory activities. Biomed Pharmacother. 2017;89:544–8. 
(35)    Nessa F, Ismail Z, Mohamed N. Xanthine oxidase inhibitory activities of extracts and flavonoids of the leaves of Blumea balsamifera. Pharm Biol. 2010;48(12):1405–12. 
(36)    De Rijke E, Zappey H, Ariese F, Gooijer C, Brinkman UAT. Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments. J Chromatogr A. 2003;984(1):45–58. 
(37)    Ezghayer MA, J. Kadhim E. UPLC-ESI-MS/MS and Various Chromatographic Technique for Identification of Phytochemicals in Populus euphratica Oliv. Leaves Extract. Iraqi J Pharm Sci. 2020;29(1):94–114. 
(38)    He L, Zhang Z, Lu L, Liu Y, Li S, Wang J, et al. Rapid identification and quantitative analysis of the chemical constituents in Scutellaria indica L. by UHPLC-QTOF-MS and UHPLC-MS/MS. J Pharm Biomed Anal. 2016;117:125–39. 
(39)    Chen B, Long P, Sun Y, Meng Q, Liu X, Cui H, et al. The chemical profiling of loquat leaf extract by HPLC-DAD-ESI-MS and its effects on hyperlipidemia and hyperglycemia in rats induced by a high-fat and fructose diet. R Soc Chem. 2013;8(2):1–10. 
(40)    Fang N, Yu S, Prior RL. LC/MS/MS Characterization of Phenolic Constituents in Dried Plums. J Agric Food Chem. 2002;50:3579−3585. 
(41)    Schütz K, Kammerer DR, Carle R, Schieber A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(2):179–86. 
(42)    Crupi P, Bleve G, Tufariello M, Corbo F, Clodoveo ML, Tarricone L. Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques. J Food Compos Anal. 2018;73:103–11. 
(43)    Martini S, Conte A, Tagliazucchi D. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Res Int. 2017;97:15–26. 
(44)    Li X, Zhang YF, Yang L, Feng Y, Deng YH, Liu YM, et al. Chemical profiling of constituents of Smilacis glabrae using ultra-high pressure liquid chromatography coupled with LTQ orbitrap mass spectrometry. Nat Prod Commun. 2012;7(2):181–4. 
(45)    Geng P, Sun J, Zhang M, Li X, Harnly JM, Chen P. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMSn and mass defect filtering. J Mass Spectrom. 2016;51(10):914–30. 
(46)    Elsadig Karar MG, Kuhnert N. UPLC-ESI-Q-TOF-MS/MS Characterization of Phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) Leaves, Fruits and their Herbal Derived Drops (Crataegutt Tropfen). J Chem Biol Ther. 2016;01(02):1–23. 
(47)    Ferreres F, Gil-Izquierdo A, Andrade PB, Valentão P, Tomás-Barberán FA. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1161(1–2):214–23. 
(48)    Park BJ, Nomura T, Fukudome H, Onjo M, Shimada A, Samejima H. Chemical Constituents of the Leaves of Eriobotrya japonica. Chem Nat Compd. 2019;55(5):942–4. 
(49)    Jaiswal R, Elsadig Karar MG, Gadir HA, Kuhnert N. Identification and characterisation of phenolics from Ixora coccinea L. (Rubiaceae) by liquid chromatography multi-stage mass spectrometry. Phytochem Anal. 2014;25(6):567–76. 
(50)    Beltrame FL, Filho ER, Barros FAP, Cortez DAG, Cass QB. A validated higher-performance liquid chromatography method for quantification of cinchonain Ib in bark and phytopharmaceuticals of Trichilia catigua used as Catuaba. J Chromatogr A. 2006;1119(1–2):257–63. 
(51)    Gómez-Romero M, Zurek G, Schneider B, Baessmann C, Segura-Carretero A, Fernández-Gutiérrez A. Automated identification of phenolics in plant-derived foods by using library search approach. Food Chem. 2011;124(1):379–86. 
(52)    Abad-García B, Berrueta LA, Garmón-Lobato S, Gallo B, Vicente F. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. J Chromatogr A. 2009;1216(28):5398–415. 
(53)    Shoko T, Maharaj VJ, Naidoo D, Tselanyane M, Nthambeleni R, Khorombi E, et al. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC Complement Altern Med. 2018;18(1):1–14. 
(54)    Cádiz-Gurrea ML, Lozano-Sanchez J, Contreras-Gámez M, Legeai-Mallet L, Fernández-Arroyo S, Segura-Carretero A. Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. J Funct Foods. 2014;10:485–98. 
(55)    Gu L, Kelm MA, Hammerstone JF, Zhang Z, Beecher G, Holden J, et al. Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J Mass Spectrom. 2003;38(12):1272–80. 
(56)    Sun J, Janisiewicz WJ, Nichols B, Jurick WM, Chen P. Composition of phenolic compounds in wild apple with multiple resistance mechanisms against postharvest blue mold decay. Postharvest Biol Technol. 2017;127:68–75. 
(57)    Rockenbach II, Jungfer E, Ritter C, Santiago-Schübel B, Thiele B, Fett R, et al. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MS n and LC-ESI-FTICR-MS. Food Res Int. 2012;48(2):848–55. 
(58)    Zhou J-X, Braun MS, Wetterauer P, Wetterauer B, Wink M. Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts. Medicines. 2019;6(2):43. 
(59)    De Tommasi N, Aquino R, De Simone F, Pizza C. Plant metabolites. New sesquiterpene and ionone glycosides from eriobotrya japonica. J Nat Prod. 1992;55(8):1025–32. 
(60)    Chen J, Li WL, Wu JL, Ren BR, Zhang HQ. Hypoglycemic effects of a sesquiterpene glycoside isolated from leaves of loquat (Eriobotrya japonica (Thunb.) Lindl.). Phytomedicine. 2008;15(1–2):98–102. 
(61)    Jian T, Ao X, Wu YX, Lv H, Ma L, Zhao L, et al. Total sesquiterpene glycosides from Loquat (Eriobotrya japonica) leaf alleviate high-fat diet induced non-alcoholic fatty liver disease through cytochrome P450 2E1 inhibition. Biomed Pharmacother. 2017;91:229–37. 
(62)    Nawrot-Hadzik I, Granica S, Abel R, Czapor-Irzabek H, Matkowski A. Analysis of antioxidant polyphenols in loquat leaves using HPLC-based activity profiling. Nat Prod Commun. 2017;12(2):163–6. 
(63)    Liao X, Hu F, Chen Z. A HPLC-MS method for profiling triterpenoid acids and triterpenoid esters in: Osmanthus fragrans fruits. Analyst. 2019;144(23):6981–8. 
(64)    Li EN, Luo JG, Kong LY. Qualitative and quantitative determination of seven triterpene acids in Eriobotrya japonica Lindl. by high-performance liquid chromatography with photodiode array detection and mass spectrometry. Phytochem Anal. 2009;20(4):338–43. 
(65)    Jian T, Ding X, Wu Y, Ren B, Li W, Lv H, et al. Hepatoprotective effect of loquat leaf flavonoids in PM 2.5 -induced non-alcoholic fatty liver disease via regulation of IRs-1/Akt and CYP2E1/JNK pathways. Int J Mol Sci. 2018;19(10):1–14. 
(66)    Scortichini M, Rossi MP. Preliminary in vitro evaluation of the antimicrobial activity of terpenes and terpenoids towards Erwinia amylovora (Burrill). J Appl Bacteriol. 1991;71(2):109–12. 
(67)    Nayak BS, Ramdath DD, Marshall JR, Isitor GN, Eversley M, Xue S, et al. Wound-healing activity of the skin of the common grape (Vitis Vinifera) variant, Cabernet Sauvignon. Phyther Res. 2010;24(8):1151–7. 
(68)    Kikuchi T, Akazawa H, Tabata K, Manosroi A, Manosroi J, Suzuki T, et al. 3-O-(E)-p-Coumaroyl Tormentic Acid from Eriobotrya japonica Leaves Induces Caspase-Dependent Apoptotic Cell Death in Human Leukemia Cell Line. Chem Pharm Bull. 2011;59(3):378–81. 
(69)    Waltrich KK, Hoscheid J, Prochnau IS. Antimicrobial activity of crude extracts and fractions of Vernonia polyanthes Less (assa-peixe) flowers. Rev Bras Plantas Med. 2015;17(4):909–14. 
(70)    Ito H, Kobayashi E, Takamatsu Y et al. Polyphenols from Eriobotrya japonica and their cytotoxicity against human oral tumor cell lines. Chem Pharm Bull (Tokyo). 2000;48(5):687–93. 
(71)    Zarrindokht Emami-Karvani. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African J Microbiol Res. 2012;5(18):1368–73. 
(72)    Mills-robertson FC, Tay SCK, Duker-eshun G, Walana W, Badu K. In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta. 2012;11(16):1–7. 
(73)    Mahavorasirikul W, Chaijaroenkul W, Itharat A, Na-Bangchang K. Screening of cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma cells In Vitro. Drug Metab Rev. 2009;41:85. 
(74)    M S, JM P. Assays related to cancer drug discovery.In: Hostettmann K. editor. Methods Plant Biochemistry: Assays for Bioactivity. In: London: Academic Press. 1990. p. 71–133. 
(75)    Do Nascimento PGG, Lemos TLG, Bizerra AMC, Arriaga AMC, Ferreira DA, Santiago GMP, et al. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules. 2014;19(1):1317–27. 
(76)    Ke ZC, Zhu ZP, Xu ZY, Fang C, Hu SQ. Response surface optimized extraction of total triterpene acids from Eriobotrya japonica (Thunb) Lindl (loquat) leaf and evaluation of their in vitro antioxidant activities. Trop J Pharm Res. 2014;13(5):787–92. 
(77)    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 1999;47(10):3954–62. 
(78)    Matthäus B. Antioxidant activity of extracts obtained from residues of different oilseeds. J Agric Food Chem. 2002;50(12):3444–52. 
(79)    Deepa N, Kaur C, Singh B, Kapoor HC. Antioxidant activity in some red sweet pepper cultivars. J Food Compos Anal. 2006;19(2006):572–8. 
(80)    Maksimovíc Z, Kovačevíc N, Lakušíc B, Ćebovíc T. Antioxidant activity of yellow dock (Rumex crispus L., Polygonaceae) fruit extract. Phyther Res. 2011;25(1):101–5. 
(81)    Tan H, Ashour A, Katakura Y, Shimizu K. A structure-activity relationship study on antiosteoclastogenesis effect of triterpenoids from the leaves of loquat (Eriobotrya japonica). Phytomedicine. 2015;22(4):498–503. 
(82)    Abu-Gharbieh E, Shehab NG, Almasri IM, Bustanji Y. Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations. PLoS One. 2019;13(8):1–12.